opt
¶
Created on 2021
@author: RBdC & MV
Functions:
Name | Description |
---|---|
GEN_id |
Identification using non-linear regression. |
GEN_id
¶
GEN_id(
y: ndarray,
u: ndarray,
id_method: OptMethods,
na: int,
nb: int | ndarray,
nc: int,
nd: int,
nf: int,
theta: int | ndarray,
max_iter: int,
stab_marg: float,
stab_cons: bool,
adjust_B: bool = False,
y_std: float = 1.0,
U_std: ndarray = array([1.0]),
) -> tuple[
ndarray, ndarray, ndarray, ndarray, floating, ndarray
]
Identification using non-linear regression.
Use Prediction Error Method and non-linear regression, due to the nonlinear effect of the parameter vector ($ \Theta $) to be identified in the regressor matrix $ \phi(\Theta) $.
These structures are identified by solving a NonLinear Program by the use of the extbf{CasADi} optimization tool.
References
Andersson, J. A.E., Gillis, J., Horn, G., Rawlings, J.B. and Diehl, M. {CasADi}: a software framework for nonlinear optimization and optimal control. 2019.